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Abstract. The g r o u n d  state of the Frabli& polaron is retrieved as a function of 
the de- of confinement in a three-dimensiod quantum well with tunable barrier 
potentials. A unified overview of the binding energy interpolating between all pos- 
sible confinement geometries is provided within the Lamework of the second-orda 
perturbation theory. 

1. Introduction 

In the last two decades much attention has been focussed on the study of polarons of 
reduced dimensionality in the context of quantum-well confined semiconductor struc- 
tures. Of particular interest is the quasi-two-dimensional (QZD) optical polaron, with 
most emphasis devoted to its strict two-dimensional (ZD) characterization within the 
framework of an idealized approximation, accounting for the almost-planar aspect of 
an electron in a thin quantum well and yet interacting with the bulk Lo-phonon modes 
of the well material [1,2]. The common theoretical prediction led by the relevant works 
in the literature [I-51 is that the electron interacts more effectively with the phonons 
in two dimensions and consequently certain polaron quantities scale by rather large 
factors over their corresponding bulk values. The ground state binding, for instance, 
becomes deepened by a factor of $T at weak coupling, and by Y 3.7 under the 
strong coupling (adiabatic) approach. Similar features show up for further other quan- 
tities like the effective polaron mass or the mean phonon density accompanying the 
electron. Going on further to quasi-one-dimensionally (QID) confined configurations, 
such as for instance the quantumwell wire (Qww) geometry, the electron phonon cou- 
pling becomes even stronger with much larger polaronic binding than in comparable 
QzD system [6]. The role the confinement effects play in pronounced phonon coupling 
can readily be confirmed by making further reference to the magnetopolaron problem 
where it has been well established that the phonon coupiing-induced corrections in 
the energy levels grow larger with increasing degree of localization brought about by 
the magnetic field (cf [7]). 

In this work we focus our attention on the ground-state property of the confined 
polaron and present a comprehensive review through a description interpolating be- 
tween integer space limits. We adopt a rather simple model of an electron immersed 
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in the field of bulk LO-phonons and bounded within an anisotropic potential box with 
parabolic potential barriers, i.e., V ( p , z )  = + ( ~ ~ p '  + tc2z2). Such a choice for the con- 
fining potential, besides facilitating the calculations, is also compatible with the usual 
harmonic description of the rapidly fluctuating electron due to  random scattering in 
the phonon field. The respective force constants tcl and tcz in the potential will be 
treated as tunable parameters refering to the degree of confinement in the z-y and I 
directions. By varying tcl and/or tc2 from zero to values much larger than unity one 
can display a unifying picture tracing the transition from the bulk to various confine- 
ment geometries, namely the quasi-two- and quasi-onedimensional limits aa well as 
the quantum well box (QWB) case. 

It should be noted that for the present we take the confined electron a~ interacting 
with the bulk phonon modes only, and refrain from including any modifications such 
as those due to phonon confinement, the polaron-induced band non-parabolicity or 
the loss of validity of the effective mass approximation in thin quantum wells. Our 
concern is primarily to give a clear view of the bulk phonon erects as a function of 
the dimensionality stripped from all other perturbing quantities. 

Since in the most commonly studied compound materials (such as GaAs, for in- 
stance) the electron-phonon coupling is rather weak, an appropriate approach is to 
treat the Frohlich interaction as a perturbation. In the following we restrict our con- 
siderations solely to the weak-coupling regime. A discussion of the same model within 
the strong-coupling polaron theory has already been provided in a previous paper [SI 
with which we shall make some correspondence in the next section. 

T Yildinm and A E q e l e b i  

2. Theory and discussion 

Using units for which 2m' = h = wLo = 1, the Hamiltonian describing the confined 
electron coupled to Lo-phonons is given by 

Q 
where 

H e  =pz+p:+ ! ( w ~ p 2 + w ~ z 2 )  

is the electron part, and 

is the Frohlich interaction. In the above, (p,  z )  and (p,p,) denote the electron position 
and momentum, and w, = JK= (i = 1,2) stand for the dimensionless measures 
of the degree of confinement in the transverse (8-y) and longitudinal (2) directions. 
The interaction amplitude is related to the electron-phonon coupling constant (Y and 
the phonon wavevector Q = ( q , q p )  through V, = &/Q. 

Depending on the so called bulk-phonon approximation we first make correspon- 
dence with the Q2D slab- and QiD wire-like confining geometries. A general view in 
the overall range of w1 and w 2  will be presented at the end of this section. 
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2.1. Q2D and Q1D confinements 

Setting w1 = 0 and varying w2 from zero to infinity one can trace the bulk polaron 
properties go over to those of a strictly zDpolaron. On the other hand, deleting the 
confining potential along the z-axis (w2 = 0 )  and fixing w1 at non-zero finite values, the 
theory reflects the QlD-description in a QWW-like tubular structure. In the following 
we shall use w to mean wl(wa) when wz(wI) = 0. 

We first derive the binding energy and the polaron mass in the slablilre conhe- 
ment. Writing V(p, t )  = $wat2 ,  the unperturbed wave equation for the electron is 
given by 

H,@k,,(P,z) E,(k)@k,,(P, 2 )  U = 0,1,2, ’ .  . (4) 
where 

with H ,  denoting the Hermite polynomial of degree U. Since 01 < 1, we assume the 
electron to be almost free in the transverse directions and thus utilize a plane wave 
representation for its motion parallel to the x-y plane, i.e., we take 4k(p )  - ap(ik.p).  
The corresponding energy eigenvalues of equation (4) are then given by 

€ , ( I C )  = (U + %)w + k 2 .  (6) 

We begin by expressing the general total wavefunction in a product form of the 
electron and phonon parts, i.e. = Gk,”(p,  z)pph. For the ground state we take 
the electron to be in the lowest subband (v = 0) and select yp,, as the phonon vacuum 
10) simply due to that at low temperatures (kT < bL0) there will be no effective 
phonons. 

The first non-vanishing contribution to the ground-state energy comes from the 
term which is of second order in the interaction amplitude, i.e. 

With the form ( 3 )  for the Frohlich interaction, the above equation can be written 
alternatively as 

where 
m 1 w  h,(q,) = d t  exp(-iq,z)Hi, m 2?7 -CO 

Projecting out the IC’ summation we obtain 
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It should be noted that due to the term q2 in the energy denominator the contributions 
to the Q summation fall off rather rapidly when this term becomes large compared to 
the phonon energy. There is therefore an efficient contribution of the virtual phonons 
to the polaron energy only when q is not too large. In this regard, for small electron 
momentum (p N 0), the term 2k q will also be small. Thus, expanding the summand 
in equation (10) in a power series up to seond order in k q we obtain 

T Ytldmm and A Ergelebi 

Using the identity 

the ground-state energy, EB = fw + kZ + AEJ'), can be written as 

1 
2 Eg = -w - cp + k2(1 - p )  

where 

In the above, cp is the polaron binding energy and p the polaronic contribution to 
the composite inertia of the electron together with the concomitant cloud of virtual 
phonons, i.e. mplm* = (1 - p)-I N 1 + p. 

For the QWW-like tubular confinement we take the transverse part of the electron 
wavefunction as consisting of harmonic oscillator states written in a product form in 
the variables x and y, and use a plane wave description along the axis of the tube. 
We find that the corresponding expressions for cp and p are almost identical to those 
derived for the slab geometry. The only modifications are that in equations (13), (16) 
and (17), q:(q2) replaces q 2 ( q : ) ,  and a factor of 2 multiplies the right-hand side of 
equation (17). 

For w = 0 and w - 00 the analytic evaluation of the integrals in equations (16) 
and (17) are readily available. In the former case U = 1 and we obtain the results 
relevant to the bulk polaron. For the binding energy we have 
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Similarly, equation (17) reduces to 

In the strict zD limit (U -+ CO), u-l tends to zero, and the corresponding integrals 
simpli@ to 

and 

In figure 1 we provide plots of the binding energy and the phonon contribution to 
the effective mass as functions of the degree of confinement. We note that with increas- 
ing barrier slopes of the confining potential, the binding in the wirelike confinement 
rapidly becomes much deeper than in the QzD configuration, which follows essentially 
from the fact that in the wire geometry the polaron becomes highly localized towards 
the wire axis due to confinement coming from all transverse directions. 

Figure 1. (a) the binding energy cp, and (6) the phonon correction to the effective 
-8 p as functions of the degree confinement for the slab (WI = 0)  and wire-like 
(w = 0) confinement geometries. 

2.2. Confinement in the overall mnge of U, and w2 

For a total overview interpolating between all possible extremes of the effective dimen- 
sionality we refer back to equation (2) and revise the perturbation calculation when 
w 1  and w2 are both non-zero in general. The binding energy thus obtained is given by 
the same expression as in equation (16) where now eQ reads as 
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Projecting out the summations over the wavevector components we obtain 

T Ytldtnm and A Erqelebi 

where 

Y=J- 

Correspondingly, the first order perturbation correction to the polaron ground 
state can be obtained as 

where Qg refers to the lowest bound-state wavefunction of the unperturbed electron, 
and 

in which 

It should be remarked that in equation (26) only the lowest subband shows up 
explicitly, and the electron states above the ground level take part in the theory 
somewhat implicitly through the parameter uQ. A glance at equation (27) reveals 
that uQ consists of a Gaussian-type bounded structure and a plane-wave counterpart, 
both of which are related to the degree of confinement through the modified wavevector 
Q(q).  In fact, it is only by means of Q(q)  that a detailed interbalance is set up between 
the two aspects (localized and free) of the problem, since the way wl and wz enter the 
theory is through q(q)  and q2(q). 

In the limit ~1 < 1, the electron is only very weakly coupled to the phonon field, 
and if additionally the confining potential is turned OR, an appropriate description of 
the electron should be a planewave representation in all directions, Indeed, when, 
w1 = wz = 0, the Gaussian structure in the polaron wavefunction is totally removed 
and wQ reduces to exp(iQ * T ) .  For a confined qeometry ( w l , w Z  > 1) however, the 
situation is just the opposite where the theory imparts most dominance to the lo- 
calized counterpart of the problem. In this extreme, the energy levels are distantly 
separated and those above the ground level do not yield any significant contribution. 
Alternatively, this can be seen from the perturbation expansion (cf equation (10)): 
the term with quantum numbers all zero leads to the smallest energy denominator 
and hence to the largest contribution in the perturbation series. Making reference to 
the slab-like confinement (wl = 0), for instance, we see that as w2 is increased to large 
values, the dominant z profile turns out to be that of the lowest bound state (Gaus- 
sian) alone, and eventually when wz becomes infinite the waveform conforms to 6(z), 
thus restricting the electronic motion in a sheet of zero thickness. This readily reflects 
our results in that q,(q) in equation (27) and the factor r;' in equation (22) tend to 
zero, resulting in a complete removal of any z-dependence in the dynamical behaviour 
of the electron, compatible with the strict zD characterization [I] of the confined p+ 
laron. In all these respects, we observe that the exponential weights exp(-w,q) and 
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exp(-w,q), which scale q and g, play an essential role in determining the planewave 
aspect of the electron, or equivalently the percent enrollment of the subbands lying 
above the ground level. 

Before giving our numerical results we would like to comment further on the im- 
plications of the present equations. It should be noted that the binding energy ex- 
pression given through equations (22)-(25) bears a dose structural resemblance to 
that obtained previously for the strongly coupled polaron within the same confining 
potential [SI, and moreover, for large values of w1 and w2, the resemblence becomes 
an identity. This follows essentially from the fact that when wl,wZ > 1, the pertur- 
bation series can be approximated by its leading term, i.e., A E P )  = - xQ fa, where 
fQ = VQ(Ggiexp(-iQ.r)[(PB) is the optimal fit to the conventional displaced oscillator 
transformation, exp fQ(aQ - at ), of the strong-coupling polaron theory (cf [SI). 
In this regard, we thus note that higt degrees of confinement raise the possibility that, 
in spite of a small coupling constant, a pseudo-strong coupling can be reached. 

11 I 
W,/(W,*W$ , = 1 , 2  

1 0  0 9  0 B 0.7 0 6 0.5 

Figure 2. The binding eneqy BS a function of the effective dimensionality. The 
succession of full (broken) curves A, B, C, D, E and F ailp for fixed d u e s  of m ( q )  = 
10, 20, 50,100,200 and 500 with WI (w) varied, respectively. The intercepts on the 
left margin refer to the slab- (wire)& configurations, and those on the right margin 
yield the binding energy values in the spherically s-etric (q = W Z )  confinement. 

In order to achieve a general insight into the enhancement in the phonon coupling 
in reduced dimensionalities, we integrate equation (24) numerically over the entire 
range of the degree of confinement. For the QzD-configuration with w2 = 10 we 
obtain N 1.16. For the case of a wire geometry with w1 = 10 the binding 
gets deeper by a factor of about 1.44, and for the spherically symmetric confinement 
(wl = w2 = 10) we have "/a N 2.02. The corresponding values when wt and/or 
w, = 100 are 1.33, 2.23 and 5.72. In figure 2 we provide a unified display of the polaron 
binding over a reasonably broad range of U, and w2 covering all interesting extremes 
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of $he confinement geometry. The intercepts of the full (broken) curves on the left 
margin give the binding energy values in the QZD- (QlD-)dimensional configurations, 
and going over to the right margin the binding is observed to get much stronger 
since now the polaron becomes squeezed symmetrically in all directions (reflecting a 
QW-box- or QW-dot-type localisation of the polaron). 

In conclusion, we have reviewed the ground-state property of the optical polaron 
in low-dimensional geometries and have provided a unifying insight into the electron 
phonon interaction as a function of the degree of confinement at weak coupling. We 
remark that in certain compound semiconductor structures, such as those consisting of 
elements from columns I1 and VI of the periodic table, the relevant coupling constants 
cannot be regarded as sufficiently small (a 2 0.4 for CdTe, for instance) for the 
perturbation approach to  be totally dependable. In its most general form the problem 
may thus involve a vague strong-coupling counterpart, making it neccessary to adopt 
powerful interpolating theories that account for the percent involvement of the weak- 
and strong-coupling aspects simultaneously. This, however, is beyond the scope of the 
present work and will be the subject of a future paper. 
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